• 精密测量技术如何助力实现科学突破

    精密测量技术如何助力实现科学突破

    总部位于瑞士的欧洲粒子物理实验室——欧洲核子研究委员会(CERN)正在开发的高亮度大型强子对撞机(HL-LHC)将成为世界上观测构成宇宙的基本物质核心的强大仪器。在这个过程中,将会扩展精密测量技术能够达到的前沿。“环球”,这是总部位于瑞士日内瓦的欧洲核子研究委员会的标志性建筑。紧凑渺子线圈(CMS)探测器,每秒可捕捉高达4000万次粒子碰撞的3D图像。高亮度大型强子对撞机本身是原始大型强子对撞机粒子加速器的更强大的升级版。原始大型强子对撞机是一个27公里长的超导磁体环,其中粒子以接近光速的速度相互碰撞,粒子每秒在27公里长的电路中穿行11,245次。每秒钟有10亿个粒子发生碰撞。对碰撞结果的分析为物理学和宇宙本质的研究带来了许多突破,其中最著名的是实验中发现希格斯玻色子,希格斯玻色子是与希格斯场相关的粒子。10亿欧洲核子研究委员会的大型强子对撞机每秒产生的新粒子对撞的次数。希格斯玻色子是物理学解释宇宙的标准模型的一部分。早在20世纪60年代,人们就已开始推测可能存在希格斯玻色子,但直到通过大型强子对撞机进行粒子碰撞探测,才得到实验证明。CERN就是一个现实例证,表明当科学家们利用世界上最先进的测量技术时,往往能得到惊人的发现,不断扩大人类的知识边界。在其生命周期内,高亮度大型强子对撞机有望产生比欧洲核子研究委员会的现有粒子加速器多十倍的碰撞,为科学研究提供更强大的实验平台。高亮度大型强子对撞机通过让粒子束聚焦到更小的空间来增加粒子碰撞的次数。粒子束由超强磁铁引导聚焦,这需要精确调节的新电源。欧洲核子研究委员会的工程师们开发了有史以来最精确、最稳定的测量系统之一,以测量高达18kA的电流。该电路采用ADI公司开发的先进电子测量技术,协助将低频噪声降低2倍。欧洲核子研究委员会的高亮度大型强子对撞机粒子加速器碰撞模型。图片由欧洲核子研究委员会提供精密挑战先进的科学研究要求电子电路在稳定性、精度、灵敏度、准确性和可靠性方面达到测量技术的极限。ADI公司的精密技术平台IC设计经理Eric Modica表示:“高亮度大型强子对撞机目前的测量降噪规范只是先进的科学研究中的一个常见要求示例,不仅是基础物理学,还包括医学研究、药理学、化学分析和材料科学。”合作推动科学发展前沿科学需要大规模的研究探索,需要多个部门和团队合作努力。高亮度大型强子对撞机项目中磁铁电源的精密测量系统就是这种情况,它只是同时进行的多个开发项目中的一个。ADI公司的科学仪器部门经理Daniel Braunworth表示:“通常,项目研究规模达到高亮度大型强子对撞机项目这样的水平,一般需要项目团队为供应商提供一份给定组件的关键规格参数列表。理论上,最符合技术规格要求的产品应该能在应用中提供最佳性能。但在现实中,精密测量技术专家和研究人员之间的合作往往才是提供更优化的解决方案和更出色的系统性能的关键。通过密切沟通和展开设计权衡讨论,研究人员可以得到更好的结果,获得更多的科学研究发现。”图片由欧洲核子研究委员会提供更深入地了解需求,能带来更好的结果Daniel Braunworth表示:“我们根据高亮度大型强子对撞机电源的关键系统要求来选择ADI组件,为欧洲核子研究委员会节省时间和资金,同时提供出色的性能。”长久以来,ADI公司一直致力于开发精密技术,对于欧洲核子研究委员会来说,它是值得信赖的合作伙伴,可提供可靠的精密测量技术。ADI公司的领域专家根据科学研究人员的需求提供产品。Eric Modica表示:“我们的领域专家与欧洲核子研究委员会的工程师合作,了解他们的电源控制要求。我们的高层次目标是为高亮度大型强子对撞机的磁铁开发一种先进的电源测量系统,让这些磁铁能够在比普通大型强子对撞机更大的粒子加速器内部空间中聚集形成精度更高、更大的磁场。”因此,ADI公司的测量专家与欧洲核子研究委员会团队合作,开发用于高亮度大型强子对撞机磁铁电源的高精度数字转换器的基准电压,这对于欧洲核子研究委员会非常关键,通过更准确地控制提供给磁铁的电流,有助于确保电源转换器在一年运行过程中失调漂移不超过10 ppm。协作成果:超精确的电源控制使得大型强子对撞机能够在27公里范围内以所需的微米级准确控制粒子束的运动。“世界领先的测量技术专家和科学研究人员之间的合作是构建能够扩大科学研究范围的系统的关键。”

    精密测量

    2023.06.24

  • 飞行时间(ToF):助力实现三维体验

    飞行时间(ToF):助力实现三维体验

    我们已习惯使用Microsoft Teams、Zoom和Google Meet来改善远程会议体验。但即便如此,所有这些互动仍然局限于第二维度,无法带给我们真正沉浸式、生活化的三维体验。尽管当前元宇宙、AR/VR,甚至全息传送(高质量的三维人物模型,能够在全球任意位置进行实时重构和传输)掀起了一股热潮,但距离实现最终的跨越现实型耳机,我们还有很长的路要走。将二维互动转换为沉浸式的三维互动颇有难度,需要融合多项技术才能实现。虽然3D显示屏和空间音频内容已独立存在了一段时间,但它们只是静态的,需要固定的观看和收听位置。在桥接现实世界和数字世界这一领域,3D飞行时间(ToF)技术已进入下一阶段,通过将静态的三维互动转换为能够感知情境的沉浸式互动,可动态适应所有环境类型(人与人的远程互动、人机互动或机器与机器的互动)中的用户情境和机器情境。从小学到研究生院——智能设备的发展分析师的报告,2021年全球智能家居设备的交付量增长了近12%,该项研究还预测,到2026年,其交付量将保持两位数增长。消费者现在期望所有设备都能不断发展,更具智能且无需接触也能操控,包括灯泡、家用设备、电视、汽车等等。+12%2021年度智能家居设备的增长率在过去10年,智能家居不断发展,智能的定义也是如此。基础的智能设备一般都很简单——都需要联网、受到控制或监测,例如扫地机器人。更先进一些的智能设备能够感知周围环境。它们可能还启用了GPS,例如,当您进入一定范围内,会自动为您打开家中的暖气,无需您触摸按钮或屏幕。甚至,更智能的设备能够倾听您的语音指令,并理解其中的意思,提供一定水平的个性化体验。例如,您家中使用的智能扬声器还能充当智能管家,当您准备睡觉时,帮您降下窗帘、调暗灯光、调节室内温度,并播放舒缓的音乐。下一次智能革命会赋予智能设备另一项人类感知——视觉。这些设备能够检测和分析我们周围的环境,然后根据分析结果做出决定。这些设备背后的支持技术是景深测量,这是实现飞行时间(ToF)的关键使能因素。何谓飞行时间(ToF)?飞行时间(ToF)摄像机向物体发射光束,该光束会反射至传感器,摄像机测量发射光束与反射光线被传感器接收之间的时间延迟,由此测量与物体之间的距离。这个过程与超声波类似,后者通过声音,而非光线来测量距离,雷达则通过无线电波来测量距离。与超声相比,飞行时间(ToF)摄像机能够更快生成具有高(深度)精度的高分辨率深度图(空间分辨率与RGB摄像机相当),且能覆盖更大范围——毕竟,光速远远大于声速。虽然雷达的探测距离更远,但飞行时间(ToF)的准确性与分辨率均更胜一筹。我们主要采用两种方法来测量飞行时间(ToF)的时延:间接飞行时间(ToF)(iToF)和直接飞行时间(ToF)(dToF):间接ToF和直接ToFiToF系统使用连续波(CW)方法,该方法测量发送和接收的光脉冲之间的相移。dToF摄像机使用基于脉冲的方法,该方法测量发射的脉冲和接收的光脉冲之间的经过时间。使用CW iToF图像传感器的优势之一:它们基于传统的半导体基础设施进行大规模量产,能够以经济的成本实现高像素密度的短程成像。ToF让设备能够感知环境,并据此作出更明智的决定——从根据室内人数来调节室温,到根据购物体验识别人们感兴趣的商品。选择iToF,还是dToF深度成像系统,最终要看应用需求和使用环境。iToF适用于需要高空间分辨率的短程成像(0.5米、5米和10米)。dToF更适合对空间分辨率要求不高的远距离成像。人工智能(AI)和光学系统设计使得选择iToF技术和dToF技术的分界线不再那么清晰明确。在能感知环境的智能边缘系统中,iToF和dToF传感器都与RGB图像和惯性传感器集成,并在AI的助力之下提升性能,消除伪影。就像鼠标改变了计算机交互,触摸屏技术推动了智能手机和平板电脑的普及一样,飞行时间(ToF)技术正在助力实现非接触式3D交互。在推动工业4.0发展方面,飞行时间(ToF)技术具有类似效用。从用于质量检测的工业机器视觉,到用于资产管理的体积检测,再到推动自主(设备)生产的导航技术,制造行业开始采用这些传感技术,并逐步转向适合恶劣工业环境的高分辨率系统。但是,飞行时间(ToF)技术从哪些方面改变了我们的日常生活?如今,有哪些技术突破能够与彩电或个人计算机媲美?人机接口:飞行时间(ToF)应用目前,我们周围采用飞行时间(ToF)技术的应用层出不穷,从汽车座舱安全,到家庭运动设备,再到游戏和画面逼真的3D远程协作。飞行时间(ToF)技术的未来应用之一是自动驾驶汽车中,作为雷达、LIDAR和其他深度传感器的补充。以下是巧妙使用飞行时间(ToF)技术的一些场景,它们让我们的生活更美好、更安全,更有乐趣:3D远程协作ToF将硬件和软件的技术进步相结合,让朋友、家人和同事觉得他们仿佛是在一起,即使他们相隔甚远。在参加沉浸式3D会议时,您不再受扁平的2D图像限制,您能看到和真人一般大小的三维人像,仿佛他们真的和您身处同一房间。座舱/汽车辅助驾驶技术飞行时间(ToF)技术助您感受使用先进驾驶辅助系统(ADAS)的乐趣,该技术提供人脸和运动监测,能够检测驾驶员是否打瞌睡,或者提醒您车辆已偏离路线。手势控制技术让驾驶员能够在视线不离道路的情况下接听电话、切换音频或调节车内温度。家庭运动设备居家健身行业不断发展,除了在线动感单车和瑜伽课程之外,现在还包含智能健身镜。当内置的虚拟教练为您提供深蹲指导时,实际是他脑中的飞行时间(ToF)技术在发挥作用。家庭影院飞行时间(ToF)技术让您的家庭影院系统非常智能,能够动态调节声音均衡,以补偿观众位置变化或环境改变的情况,例如增添了新家具。购物在线购物已经变得非常简单和便捷,使很多不愿前往实体店的购物者,也能亲身查看自己感兴趣的物品。飞行时间(ToF)技术让您能够使用手机测量空间环境,并重新规划您的房间布局,或者,先由您的三维人像试穿衣服,再决定是否购买。游戏和元宇宙通过佩戴AR/VR耳机,人们能够基于飞行时间(ToF)系统获取的深度信息,通过手势跟踪与置于真实世界中的虚拟物体进行交互,更准确地连接真实世界和数字世界,从而获得沉浸式体验。智能工厂ToF技术助力实现的机器视觉是推动实现灵活、自适应生产配置的关键因素。这让人与机器能够安全协作,帮助提高生产力、不断提升质量,充分挖掘工厂的产能。ADI的飞行时间(ToF)技术,让创意起飞如果以当前的速度继续加速创新,那么在未来的十年或二十年,我们将迎来另一场改变生活方式的创新浪潮。深度传感器和成像技术的广泛应用可能带来超出我们想象的智能设备,或者会出现全新的技术,让智能镜和AR耳机变得和扫地机器人一样平常。ADI帮助客户共同打造新品,并充分利用智能边缘见解,包括飞行时间(ToF)系统解决方案。ADI先进的飞行时间(ToF)成像传感器与完整的系统解决方案配合,将数据处理、激光驱动器、电源管理和软件/固件集成到同一设备中,以实现下一代智能边缘解决方案。

    飞行

    2023.06.24

  • 英特尔入选COOLERCHIPS计划,致力于为未来数据中心打造全新冷却技术

    英特尔入选COOLERCHIPS计划,致力于为未来数据中心打造全新冷却技术

    “近期,美国能源部(DOE)宣布,选定含英特尔在内的15家机构,为未来数据中心打造高性能、高效节能的冷却解决方案。这一消息已于五月宣布,是COOLERCHIPS计划的一部分。COOLERCHIPS计划是由美国能源部能源高级研究计划局(ARPA-E)提供支持,旨在优化信息处理系统的冷却操作,提高能源利用率、可靠性和碳超高效率。”ARPA-E计划的目标是将未来2千瓦处理器的冷却效率提高两倍以上近期,美国能源部(DOE)宣布,选定含英特尔在内的15家机构,为未来数据中心打造高性能、高效节能的冷却解决方案。这一消息已于五月宣布,是COOLERCHIPS计划的一部分。COOLERCHIPS计划是由美国能源部能源高级研究计划局(ARPA-E)提供支持,旨在优化信息处理系统的冷却操作,提高能源利用率、可靠性和碳超高效率。其中,英特尔的项目将获得为期三年,共计171万美元的资助。该项目将推动英特尔在其高性能处理器中部署更多核心及晶体管的同时,管理未来设备所产生的热量,进而推动摩尔定律的延续。英特尔超级计算平台事业部首席工程师兼热设计师Tejas Shah表示:“简单、可持续及易于升级的特性是浸没式冷却技术被用户采纳的原因。该项目将使得两相浸没式冷却技术的发展,能够处理未来十年处理器所需电力指数级增长所带来的问题。”数据中心耗电量约占美国总耗电量的2%,其中,数据中心冷却的用电量则占据了40%。而该入选项目则旨在减少冷却数据中心所必需的能源,并降低与这一关键基础设施相关的运营碳足迹。为满足行业对计算能力和性能日益增长的需求,未来的数据中心处理器预计需要超过2千瓦(kW)的电力,这对于现有冷却技术来说是一项挑战。如今最强大的芯片的用电量已直奔1千瓦。冷却解决方案的开发不仅将进一步增强英特尔处理器及英特尔代工服务生产的处理器的性能,使得摩尔定律得以延续,同时,也将推动英特尔兑现其在能源效率和可持续发展方面的承诺。英特尔将与学术界及行业领袖合作,开发创新的浸没式冷却解决方案。英特尔将负责并监督整项研究的开展,为评估工作提供热测试工具,定义下一代处理器的外形规格和限制条件,包括热点位置。英特尔的项目打造了具备超低热阻的珊瑚形浸没式液冷散热器,将其集成到三维真空蒸发腔中,以支持更密集、性能更高的设备。英特尔的设计将通过优化三维真空蒸发腔以解决两相浸没式液冷面临的挑战,从而更有效地散发热量。研究人员将使用3D打印技术制造这种新型散热器,并在多种环境下测试蒸发器的性能。该团队将把新的真空蒸发腔均温板设计与创新的沸腾增强涂层结合起来,通过提高成核点密度来降低热阻。如今,这些涂层被应用在平坦的表面上,但研究表明,具有内部凹槽状特征的珊瑚形散热器设计具有二相式浸没式液冷的最高外部传热系数潜力。该团队将基于计算方法来确定珊瑚状散热器的最佳设计。而如今的散热器则通常是由长而平行的螺纹条构成。研究人员将把这些创新应用于两相浸没式冷却系统中,其中,服务器在一个特别设计的密封槽中运行,并使用一种非导电的液体介质。服务器产生的热量使液体沸腾并产生蒸汽,然后经历相变回到液体状态,同时带走热量,其原理与家用空调系统类似。该团队的目标是将整个两相浸没式冷却系统的能力从0.025°C/瓦提高到0.01°C/瓦以下,或将效率提高2.5倍或更多。关于英特尔英特尔(NASDAQ: INTC)作为行业引领者,创造改变世界的技术,推动全球进步并让生活丰富多彩。在摩尔定律的启迪下,我们不断致力于推进半导体设计与制造,帮助我们的客户应对最重大的挑战。通过将智能融入云、网络、边缘和各种计算设备,我们释放数据潜能,助力商业和社会变得更美好。如需了解英特尔创新的更多信息,请访问英特尔中国新闻中心intel.cn/content/www/cn/zh/newsroom以及官方网站intel.cn。
  • 联芯通支持ISO 15118-20双向电力传输,面向车辆到电网(V2G)的創新解決方案!

    联芯通支持ISO 15118-20双向电力传输,面向车辆到电网(V2G)的創新解決方案!

    “杭州联芯通半导体有限公司(简称联芯通)是一家智能充电通信芯片设计公司,宣布支持ISO 15118-20双向电力传输(BPT, Bidirectional Power Transfer)。这种功能,也被称为V2G(Vehicle-to-Grid,车辆到电网),使电动汽车不仅可以从电网获取电力,还可以将储存电力回充到电网。”杭州联芯通半导体有限公司(简称联芯通)是一家智能充电通信芯片设计公司,宣布支持ISO 15118-20双向电力传输(BPT, Bidirectional Power Transfer)。这种功能,也被称为V2G(Vehicle-to-Grid,车辆到电网),使电动汽车不仅可以从电网获取电力,还可以将储存电力回充到电网。根据支持Combined Charging System (CCS) 标准的全球非营利组织 CharIN 的说法,将电动汽车并入电网服务是使未来能源世界智能化和可持续发展的步骤之一。因此,电动汽车充电所使用的硬件和软件支持双向充电是非常重要的,其关键推动因素是 CCS 和 ISO 15118-20。 联芯通HomePlug GreenPHY SECC 芯片组 MSE1021 + MSEX24-i 和 EVCC 芯片组 MSE1022 + MSEX25-i 支持 ISO 15118-20 BPT。 除了常规的电动汽车充电外,驾驶员还可以选择在电价高时使用存储在电动汽车中的电力,在电价低时为电动汽车重新充电,以节省资金甚至获利。V2G车辆到电网融合有利于电网,同时满足驾驶员的出行需求。 与住宅车库中常见的交流充电不同,使用 CCS 标准可直接通过充电站双向访问电动汽车或其电池,无需在车内安装 V2G 硬件。此外,支持 CCS 的壁挂直流充电桩(DC wall boxes)不仅可以在家中为电动汽车充电,而且还可以兼容其他地方的大功率充电基础设施。 BPT 是 2022 年 4 月发布的 ISO 15118-20「第二代网络层和应用层要求」的一个特性。除了改进其前身 ISO 15118-2 涵盖的功能,包括交流和直流充电、即插即充和智能充电,ISO 15118-20 还规定了双向和其他创新充电功能。使用BPT可以为电网提供稳定服务,目标是将电动汽车转变为移动储能系统。关于杭州联芯通半导体有限公司联芯通是一家长距离、大规模、自动组网的物联网通信芯片与软件设计公司,拥有完整的通信解决方案,包括Wi-SUN、Homeplug AV & GreenPHY、HPLC、G3-PLC,无线有线融合双模通信方案。作为国际通信规范的贡献者,联芯通参与Wi-SUN FAN 1.1及G3-PLC&RF混合双模规范的制定。联芯通为智能能源、智能城市、智能住宅、智能传感市场应用提供了高可靠、低成本、低功耗的通信方案,目标成为广域大规模物联网通讯芯片与组网软件解决方案的领航者。http://www.unicomsemi.com
  • 如何设计用于牲畜监测、车队管理和工业 4.0 物流的多重连接跟踪系统

    如何设计用于牲畜监测、车队管理和工业 4.0 物流的多重连接跟踪系统

             对于牲畜管理等农业经营活动、食品和药品冷链仓储、车队管理,以及工业 4.0 灵活生产操作,实时资产跟踪和状态监测必不可少。这是一个复杂的过程,涉及使用多个传感器来监测环境条件。此过程强调,为确保位置信息准确,资产必须支持多星系全球导航卫星系统 (GNSS) 功能,包括 GPS、Galileo、Glonass、北斗和 QZSS。此外,无论周围环境如何,多重连接解决方案都必须能够实时报告资产的位置和状况,包括连接到云以支持集中监测。同时,还需要节能,以最大程度减少对电池电量的需求,并且系统必须安全可靠,能阻止黑客入侵。设计资产跟踪和状态监测系统是一项复杂的多学科活动,需要消耗许多资源和大量时间。除了硬件设计相当复杂外,数据还需要安全地连接到云端和移动设备,从而以可操作的格式提供产生的丰富信息。当设计资产跟踪系统时,设计人员可以借助开发套件和参考设计,简化先进资产跟踪应用的原型开发、测试和评估,而不必从一张白纸开始。本文将讨论开发资产跟踪和状态监测系统时所要考虑的 GNSS、传感器、连接及其他因素,然后介绍 STMicroelectronics 的一款综合开发套件,其中包括用于各类传感器、GNSS 定位和通信功能的多个印刷电路板。该套件还包括电池和高级电源管理(以最大限度地延长电池寿命)、软件和固件库以及应用开发工具。资产到底在哪里?资产跟踪的第一步是使用美国国家海洋电子协会 (NMEA) 数据格式收集当前位置信息。为了确保互操作性,所有 GPS 制造商都使用 NMEA 这一标准。标准 NMEA 信息格式称为语句。NMEA 定义了多个语句来提供不同类型的信息,包括:GGA – 全球定位系统固定数据,包括三维坐标、状态、使用的卫星数量和其他数据GSA – 精度衰减因子 (DOP) 和主动卫星GST – 位置误差统计GSV – 可见卫星数量以及每颗卫星的伪随机噪声 (PRN) 码、仰角、方位角和信噪比RMC – 位置、速度和时间ZDA – UTC 日、月、年,以及当地的时区偏移量由于不同类型的 GPS 接收机可以使用同一接口,并且利用相应的语句可以轻松访问特定数据集,因此使用 NMEA 可简化定位软件的开发。如何提高精度?原始 GNSS 数据只能提供有限的定位精度。有一些工具可以改善定位估计值,包括差分全球定位系统 (DGPS) 服务,该服务向船载 GPS 导航设备提供校正信号。DGPS 使用海上无线电技术委员会 (RTCM) 协议来提供增强的定位数据。此外,星基增强系统 (SBAS) 可用来提高位置信息的精度,这包括美国广域增强系统 (WAAS)、欧洲地球静止轨道导航重叠系统 (EGNOS)、亚洲多功能卫星增强系统 (MSAS) 以及印度的区域 SBAS,即 GPS 辅助静地轨道增强导航 (GAGAN)(图 1)。图 1:TESEO LIV3F 多星系 GNSS 接收器包括一套工具,例如 DGPS、SBAS 和 RTCM(左下),以实现高精度定位解决方案。(图片来源:STMicroelectronics)资产状况如何?在许多情况下,了解资产的位置只是其中一个难题。收集有关资产状况的信息可能也很重要,这些信息包括其物理状态以及是在移动还是处于静止状态。根据需要,可以部署各种传感器,包括:温度传感器 - 工作温度范围为 -40°C 至 +125°C、高精度、经过美国国家标准与技术研究所 (NIST) 可溯源校准,并按照 IATF 16949:2016 标准的要求进行了验证。压力传感器 - 紧凑且坚固耐用的微机电系统 (MEMS) 压阻式绝对传感器可用作数字输出气压计,其绝对压力范围为 260 至 1260 hPa(也称为毫巴)。此传感器必须高度精确,并包含温度补偿。湿度传感器 - 工作温度范围为 -40°C 至 +120°C,湿度测量范围为 0 至 100% 相对湿度 (rH)。应对其进行温度补偿,使得在 20% 至 80% rH 范围内的精度为 ±3.5% rH。惯性测量装置 (IMU) - 包括基于 MEMS 的 3D 加速度计和 3D 陀螺仪,用于确定资产是在移动还是处于静止状态。加速度计 - 例如基于 MEMS 的三轴线性加速度计,用以测量资产遭受的冲击和振动。安全连接一旦确定了资产的位置和状况,就应该将这些信息传送出去。根据具体情况,可能需要兼具长距离和短距离安全连接。就 STMicroelectronics 的 STEVAL-ASTRA1B 多重连接资产跟踪平台而言,主板上的多个系统元件支持实现连接和安全性,包括(图 2):STM32WB5MMG 是一款经过认证的 2.4 GHz 无线模块,集成了 STM32WB 双核 Arm® Cortex®-M4/M0+、晶体和带匹配网络的芯片天线。该模块包含低功耗蓝牙 (BLE) 协议栈,并支持 Open Thread、Zigbee 和其他 2.4 GHz 协议。STM32WL55JC 提供长距离无线连接。其也包含双核 Arm Cortex-M4/M0+,并且支持 GFSK、LoRa 等协议。标准版射频前端支持 868、915 和 920 MHz 频段。若更换一些元器件,该模块可以支持更低的频率。STSAFE-A110 安全元件连接到 STM32WB5MMG,用于执行安全数据管理和认证。此元件用于支持资产跟踪等物联网 (IoT) 网络,并且包含安全操作系统和安全微控制器。图 2:STEVAL-ASTRA1B 资产跟踪平台的主板包括用于短距离连接的 STM32WB5MMG、用于长距离连接的 STM32WL55JC 和用于安全运行的 STSAFE-A110。(图片来源:STMicroelectronics)资产跟踪开发环境资产跟踪应用的开发人员可以考虑使用 STMicroelectronics 的STEVAL-ASTRA1B 软硬件开发套件和参考设计,其有助于高级资产跟踪系统的原型开发、测试和评估(图 3)。STEVAL-ASTRA1B 以 STM32WB5MMG 模块和 STM32WL55JC SoC 为基础构建,二者相结合以提供短距离和长距离连接(BLE、LoRa 以及 2.4 GHz 和 sub-1-GHz 专有协议)。如需 NFC 连接,可以使用 ST25DV64K。STSAFE-A110 支持安全运行,而 Teseo-LIV3F GNSS 模块则提供户外定位。图 3:STEVAL-ASTRA1B 平台包括高级跟踪系统开发所需的所有硬件、固件和软件工具。(图片来源:Digi-Key)该 GNSS 定位接收器与 GPS、Galileo、GLONASS、北斗、QZSS 和 NavIC(也称为 IRNSS)等六个系统兼容。该系统还包括 WAAS、EGNOS、MSAS、WAAS 和 GAGAN SBAS 支持。系统中有一个陷波滤波器用于抗干扰。还包括一系列用于状态监测的传感器(图 4):STTS22HTR – 数字温度传感器,工作温度范围为 -40°C 至 +125°C,在 -10°C 至 +60°C 范围内最大精度为 ±0.5°C,提供 16 位温度数据输出。校准支持 NIST 溯源,器件 100% 通过测试和验证,测试和验证所用设备根据 IATF 16949:2016 标准进行校准。LPS22HHTR – MEMS 压阻式绝对压力传感器,用作数字输出气压计,可测量 260 至 1260 hPa 的绝对压力。其绝对压力精度为 0.5 hPa,压力传感器噪声低至 0.65 Pa,提供 24 位压力数据输出。HTS221TR – 相对湿度和温度传感器。其可以测量 0 到 100% 的 rH,灵敏度为 0.004% rH/最低有效位 (LSB),在 20% 到 +80% rH 范围内湿度精度为 ±3.5% rH,在 +15°C 到 +40°C 范围内温度精度为 ±0.5°C。LIS2DTW12TR – MEMS 三轴线性加速度计和温度传感器,提供用户可选的 ±2g/±4g/±8g/±16g 满量程,可测量加速度,输出数据率为 1.6 Hz 至 1600 Hz。LSM6DSO32XTR – IMU 模块,含有一个始终开启的 32 g 3D 数字加速度计和一个 3D 数字陀螺仪,范围为 ±4/±8/±16/±32g 满量程,角度范围为 ±125/±250/±500/±1000/±2000 度/秒 (dps) 满量程。图 4:STEVAL-ASTRA1B 的主板包括全套传感器(左)、系统板(黄框)和 GNSS 连接元件(右下方的 TESEO LIV3F 和天线)。(图片来源:STMicroelectronics)电源管理对于无线跟踪设备非常重要。为确保电池续航力持久,STEVAL-ASTRA1B 包含许多电源管理元器件,例如:ST1PS02D1QTR 400 mA 同步降压转换器,输入电压范围为 1.8 V 至 5.5 V,输入电压为 3.6 V 时输入静态电流为 500 nA,典型效率为 92%。STBC03JR 电池电源管理和充电器 IC,包括:一个用于单节锂离子 (Li-ion) 电池的线性电池充电器部分,采用恒流/恒压 (CC/CV) 充电算法;一个 150 mA 低压差稳压器 (LDO);两个单刀双掷 (SPDT) 负载开关;以及能在发生故障时保护电池的电路。TCPP01-M12 USB Type-C® 端口保护 IC,包括:VBUS 过压保护,可在 5 V 至 22 V 之间调节(通过外部 N 沟道 MOSFET);CC 线路上防范 VBUS 短路的 6.0 V 过压保护 (OVP);以及连接器引脚 CC1 和 CC2 的系统级静电放电 (ESD) 保护,符合 IEC 61000-4-2 4 级标准。软件和固件库STEVAL-ASTRA1B 含有或可提供各种用于开发资产跟踪应用的软件和固件。实例包括:FP-ATR-ASTRA1 功能包可实现完整的资产跟踪应用,已包括在 STEVAL-ASTRA1B 中。该功能包从 GNSS 接收器获得定位数据,从环境和运动传感器读取数据,并利用 BLE 和 LoRaWAN 连接将数据发送到云端。功能包中包括车队管理、牲畜监测、货物监测和物流等可定制用例。STAssetTracking 应用可以远程配置支持 BLE、Sigfox 或 NFC 的资产跟踪设备。其可用来启用特定传感器的数据记录,并设置开始和停止记录的触发阈值。DSH-ASSETRACKING 仪表盘是一款由 Amazon Web Services (AWS) 支持的云应用,提供了一个直观的界面,针对收集、可视化和分析来自 GNSS 定位服务及运动和环境传感器的数据进行了优化。该仪表盘可以绘制实时或历史位置数据和传感器值,并可监测环境条件和事件(图 5)。图 5:DSH-ASSETRACKING 仪表盘是一款 AWS 支持的资产跟踪云应用。(图片来源:STMicroelectronics)总结资产跟踪是牲畜监测、车队管理和物流等应用需要的一项关键而复杂的功能。如本文所述,STMicroelectronics 的 STEVAL-ASTRA1B 软硬件开发套件和参考设计包括加快高性能资产跟踪设备设计所需的 GNSS 定位服务、全套环境和运动传感器、电源管理元件以及全套软件和固件。
  • 为什么以及如何将 Efinix FPGA 用于 AI/ML 成像 — 第 1 部分入门指南

    为什么以及如何将 Efinix FPGA 用于 AI/ML 成像 — 第 1 部分入门指南

    全新的 FPGA 架构方法带来了更精细的控制和更大的灵活性,以满足机器学习 (ML) 和人工智能 (AI) 的需求。本系列文章包括两部分,第 1 部分介绍了 Efinix 的一款此类架构,以及如何借助开发板快速入门。第 2 部分讨论了开发板与外部器件和外设(如摄像头)的连接。从工业控制和安全到机器人、航空航天和汽车,FPGA 在许多应用中扮演着重要角色。凭借可编程逻辑内核的灵活性及其广泛的接口能力,FPGA 在需要部署 ML 推理的影像处理中的应用日渐广泛。FPGA 非常适合用来实现具有多个高速摄像头接口的解决方案。此外,FPGA 还能在逻辑中实现专门的处理管道,从而消除基于 CPU 或 GPU 的解决方案的相关瓶颈。然而,对于许多开发人员来说,他们的应用需要更多 ML/AI 功能及更精细的控制或路由和逻辑,而这些是采用组合逻辑块 (CLB) 的经典 FPGA 架构所不能提供的。全新的 FPGA 架构方法解决了这些问题。例如,Efinix 的 Quantum 架构采用可交换逻辑和路由 (XLR) 块。本文讨论了 Efinix FPGA 架构的主要特点和属性,重点介绍其 AI/ML 能力并探讨了其在真实世界的实现。随后,本文讨论了一款开发板及相关工具,开发人员可以借助它们快速开始后续 AI/ML 成像设计。Efinix FPGA 器件Efinix 目前提供两个系列的器件。最初推出的是 Trion 系列,逻辑密度为 4000 (4K) 至 120K 逻辑元件 (LE),采用 SMIC 40LL 工艺制造。最新系列的器件则是 Titanium 系列,逻辑密度为 35K 至 100 万 (1M) 逻辑元件,采用非常流行的 TSMC 16 nm 节点制造。这两个系列均基于 Quantum 架构,这在 FPGA 领域是独一无二的。标准 FPGA 架构基于 CLB,在最基础的层面上,包含一个查找表 (LUT) 和触发器。CLB 实现逻辑方程,然后通过路由互连。借助 XLR 块,Efinix 的 Quantum 架构摆脱了单独的逻辑和路由块。XLR 块的独特之处在于,可以将其配置为具有 LUT、寄存器和加法器或路由矩阵的逻辑单元。这种方法带来一个更精细的架构,可提供路由灵活性,使复杂逻辑或路由的实现能够达到预期的性能。图 1:XLR 块的独特之处在于,可以将其配置为具有 LUT、寄存器和加法器或路由矩阵的逻辑单元。(图片来源:Efinix)最新的 Titanium 系列器件为开发人员提供了最先进的功能(图 2)。搭载 XLR 内核,该系列器件可提供运行速度为 16 Gbps 或 25.8 Gbps(具体取决于所选择的器件)的多千兆位串行链路。这些多千兆位链路对于实现芯片内外的高速数据传输至关重要。图 2:Titanium FPGA Ti180 提供多种选择,具体取决于总线宽度、I/O 和存储器要求。(图片来源:Efinix)Titanium 器件还提供广泛的输入/输出 (I/O) 接口功能,可归类为通用 I/O (GPIO),并可支持单端 I/O 标准,如 3.3 V、2.5 V 和 1.8 V 的低压 CMOS (LVCMOS)。对于高速和差分接口,Titanium 器件提供高速 I/O (HSIO),支持单端 I/O 标准,如 1.2 V、1.5 V 的 LVCMOS,以及 SSTL 和 HSTL。HSIO 支持的差分 I/O 标准包括低压差分信号 (LVDS)、差分 SSTL 和 HSTL。现代 FPGA 还需要紧密耦合的高带宽存储器来存储用于图像处理应用的图像帧、用于信号处理的采样数据,当然还要为 FPGA 内实现的处理器运行操作系统及软件。Titanium 系列器件能够连接动态数据速率四 (DDR4) 和低功耗 DDR4(x) (LPDDR4(x))。根据所选择的具体 Titanium 器件,支持的总线宽度为 x32 (J) 或 x16 (M),而有些器件不支持 LPDDR4 (L)。Titanium FPGA 基于 SRAM,需要配置存储器,通过主/从串行外设互连器件 (SPI) 或 JTAG 进行器件配置。为了确保这种配置方法安全,Titanium FPGA 使用 AES GCM 对比特流进行加密,同时使用 AES GCM 和 RSA-4096 提供比特流验证。采用这种强大的安全措施非常有必要,原因在于 FPGA 部署在边缘,恶意攻击者可在边缘访问并操纵其行为。开发板介绍开发板是 FPGA 评估流程的关键要素,因为它们可以用来探索器件的功能和原型应用,从而帮助降低整体风险。首款可用于评估 Titanium FPGA 和开始原型设计应用的开发板是 Ti180 M484(图 3)。此开发板具有一个 FPGA 夹层卡 (FMC) 连接器和 4 个Samtec QSE 连接器。图 3:除 Titanium FPGA 外,Ti180 M484 开发套件还配备一个 FMC 连接器和 4 个 Samtec QSE 连接器。(图片来源:Adam Taylor)安装在此开发板上的 Ti180 FPGA 提供 172K XLR 单元、32 个全局时钟、640 个数字信号处理 (DSP) 元件和 13 Mb 的嵌入式 RAM。DSP 元件能够实现固定点 18 x 19 乘法和 48 位乘法运算。此 DSP 还可针对以双路或四路配置运行的单指令多数据 (SIMD) 运算进行优化。DSP 元件也可以配置为执行浮点运算。像大多数开发板一样,Ti180 开发板提供了简单的 LED 和按钮。但是,其真正的强大之处在于连接能力。Ti180 开发板提供一个小引脚数的 FMC 连接器,可以连接各种外设。由于这是一种广泛使用的标准,因此有许多 FMC 卡可以实现高速模数转换器 (ADC)、数模转换器 (DAC)、网络和内存/存储解决方案的连接。除 FMC 连接外,此开发板还配备 4 个 Samtec QSE 连接器,供开发人员添加扩展卡。这些 QSE 连接器用于提供 MIPI 输入和输出,其中每个 QSE 连接器提供一个 MIPI 输入或输出。图 4:Ti180 M484 开发套件,图中显示了其基于 QSE 和 FMC 连接器的多种扩展选项。(图片来源:Adam Taylor)Ti180 开发板还提供 256 Mb 的 LPDDR4,以支持影像或信号处理应用所需的高性能存储器。此外,该开发板提供了一系列时钟选项(25、33.33、50 和 74.25 MHz),可搭配器件锁相环 (PLL) 使用以产生不同的内部频率。在开发过程中,能够在开发板上实时重新编程和调试至关重要,而这需要 JTAG 连接,此板通过 USB-C 接口提供了此连接。另外,还提供了两个 256 Mb NOR 闪存器件形式的非易失性存储器,可用于演示配置解决方案。此开发板由包装盒内随附的 12 V 通用电源适配器供电。附件还包括一个 FMC 到 QSE 分线板,以及基于 QSE 的 HDMI、以太网、MIPI 和 LVDS 扩展卡。为了演示 Ti180 的影像处理能力,还提供一个双 RPI 子卡和两个 IMX477 摄像头卡。软件环境实现针对 Ti180 开发板的设计时要使用 Efinix 软件 Efinity。该软件能够通过合成及布局布线生成比特流。此外,它还为开发人员提供了知识产权 (IP) 块、时序分析和片上调试功能。请注意,需要有开发板才能使用 Efinity 软件。但与其他供应商不同的是,该工具没有其他需要额外许可的版本。在 Efinity 中,针对所选的器件创建项目。然后,可以将 RTL 文件添加到项目中,并为定时和 I/O 设计创建约束条件。利用 HSIO、GPIO 和专用 I/O,开发人员还可在 Efinity 中实现 I/O 设计。图 5:在 Efinity 中,针对所选器件创建项目。(图片来源:Adam Taylor)FPGA 设计的一个关键因素是利用 IP,特别是复杂的 IP,如 AXI 互连、存储器控制器和软核处理器。Efinity 为开发人员提供了一系列 IP 块,可用于加速设计过程。图 6:Efinity 为开发人员提供了一个 IP 产品目录,可用于加速设计过程。(图片来源:Adam Taylor)虽然 FPGA 在实现并行处理结构方面表现优异,但许多 FPGA 设计包含软核处理器。这些处理器能够实现顺序处理,如网络通信。为了能够在 Efinix 器件中部署软核处理器,Efinity 提供了 Sapphire 片上系统 (SoC) 配置工具。Sapphire 允许开发人员定义一个多处理器系统,该系统具有跨多个处理器的缓存和缓存一致性,同时能够运行嵌入式 Linux 操作系统。在 Sapphire 中,开发人员可以选择 1 至 4 个软核处理器。所实现的软核处理器是 VexRiscV 软 CPU,基于 RISC-V 指令集架构。VexRiscV 处理器是一款 32 位实现,具有流水线扩展,并提供可配置的特性集,使其非常适合用作 Efinix 器件中的软核处理器。可选配置包括乘法器、原子指令、浮点扩展和压缩指令。根据 SoC 系统的配置,性能范围为 0.86 至 1.05 DMIPS/MHz。在 Efinix 器件中设计并实现硬件环境后,即可使用 Ashling RiscFree IDE 来开发应用软件。Ashling RiscFree 是一款基于 Eclipse 的 IDE,能够创建和编译应用软件,并可针对目标进行调试,以在部署前对应用程序进行微调。图 7:Ashling RiscFree 是一款基于 Eclipse 的 IDE,能够创建和编译应用软件,并可针对目标进行调。(图片来源:Adam Taylor)如果要开发嵌入式 Linux 解决方案,将提供所有必要的启动工具,包括第一级引导程序、OpenSBI、U-Boot 和使用 Buildroot 的 Linux。另外,如果需要实时解决方案,开发人员可以使用 FreeRTOS。AI 实现Efinix 的 AI 实现以 RISC-V 软核运算为基础。其中利用 RISC-V 处理器的自定义指令功能,来实现 TensorFlow Lite 解决方案的加速。借助 RISC-V 处理器,用户还能够创建自定义指令,这些指令可用作 AI 推理后的预处理或后处理的一部分,从而创建出响应速度更快、更具确定性的解决方案。要开始 AI 实现,第一步是探索 Efinix 模型库,这是一个已针对其终端技术优化的 AI/ML 模型库。对于使用 Efinix 器件的开发人员,可以访问该模型库,并使用 Jupyter Notebooks 或 Google Colab 来训练网络。训练网络后,便可使用 TensorFlow Lite 转换器将其从浮点模型转换为量化模型。转入 TensorFlow Lite 格式后,可以利用 Efinix 的 tinyML 加速器在 RISC-V 解决方案上创建可部署的解决方案。tinyML 生成器使开发人员能够定制加速器的实现并生成项目文件。当以这种方式部署时,加速可达 4 至 200 倍,具体取决于所选的架构和定制方案。总结凭借独特的 XLR 结构,Efinix 器件可为开发人员提供灵活性。该工具链不仅能实现 RTL 设计,还能实现部署软核 RISC-V 处理器的复杂 SoC 解决方案。AI/ML 解决方案建立在软核 SoC 之上,可以实现 ML 推理的部署。

    FPGA

    2023.06.13

  • 芯片解决了高速以太网中的TCP / IP瓶颈问题
  • BD8xAxxEFV-M 4 通道/6 通道 LED 驱动器

    BD8xAxxEFV-M 4 通道/6 通道 LED 驱动器

    BD8xAxxEFV-M 4 通道/6 通道 LED 驱动器ROHM Semiconductor 用于 LCD 背光的 4 通道/6 通道 LED 驱动器有助于降低中型和大型汽车显示器的功耗ROHM BD83A04EFV-M、BD83A14EFV-M 和 BD82A26MUF-M 4 通道/6 通道 LED 驱动器 IC 专为汽车信息娱乐系统和仪表盘中的中大型汽车显示器而设计。传统的 LED 驱动器消耗相对较大的功率,使其在 PWM 调光期间容易出现闪烁。相比之下,ROHM 的 LCD 背光 LED 驱动器将专有的低功耗技术与无缝 PWM 调光相结合,消除了显示屏亮度从低到高变化时的闪烁。这些产品利用专有的低功耗技术来减少 LED 驱动器电流控制电路中的损耗。结果是在典型条件下(每通道 80 mA LED 电路电流,12 V 电源),整体 IC 功耗比传统产品低 20%。这有助于降低存在功耗问题的中型到大型汽车显示器的功耗。所有型号均配备 DC 和 PWM 调光功能,以满足广泛的需求。ROHM 独创的无缝 PWM 调光技术不再需要为低/高亮度变化切换电流反馈模式,因此减少了一般 PWM 调光出现的闪烁,提高了系统可靠性。特性通过 AEC-Q100 认证DC 和 PWM 调光闪烁消除低功耗应用仪表盘车载信息娱乐系统平视显示 (HUD)电子后视镜(侧视/后视)兼容从 5” 到 10” 以上的各种显示器尺寸产品属性类型描述选择类别集成电路(IC)电源管理(PMIC)LED 驱动器制造商Rohm Semiconductor系列Automotive, AEC-Q100包装卷带(TR)剪切带(CT)Digi-Reel® 得捷定制卷带产品状态在售类型DC DC 稳压器拓扑升压内部开关输出数4电压 - 供电(最低)4.5V电压 - 供电(最高)48V电压 - 输出50V电流 - 输出/通道120mA频率200kHz ~ 2.42MHz调光模拟,PWM应用汽车级工作温度-40°C ~ 125°C安装类型表面贴装型封装/外壳24-VSSOP(0.220",5.60mm 宽)裸露焊盘供应商器件封装24-HTSSOP-B基本产品编号BD83A04

    LED 驱动器

    2023.06.07

  • 造一颗SiC芯片,需要哪些关键设备?

    造一颗SiC芯片,需要哪些关键设备?

    中国粉体网讯 碳化硅是当下最为火热的赛道之一,据不完全统计,仅在2022年,国内新立项/签约的碳化硅项目就超过20个,总投资规模超过476亿元。其中,设备作为碳化硅产业链中的重要一环,正在飞速发展。事实上,国内在材料生长、切磨抛装备和表征设备等方面都需要依赖进口,部分设备型号及更新速度严重受限于其他国家的政策,导致国内厂商生产成本居高不下,产能供给有限,且技术能力也落后于国际先进水平,装备国产化势在必行。(在此背景下,中国粉体网将于2023年6月14日江苏苏州举办第二届半导体行业用陶瓷材料技术研讨会,届时,来自中国电子科技集团公司第四十八研究所的高级工程师杨金将带来题为《碳化硅芯片关键装备及高性能陶瓷零部件国产化应用》的报告,欢迎报名参会)。SiC产业链关键环节及工艺特点SiC产业链关键环节SiC器件产业链与传统半导体类似,一般分为单晶衬底、外延、芯片、封装、模组及应用环节。SiC单晶衬底环节通常涉及到高纯碳化硅粉体制备、单晶生长、晶体切割研磨和抛光等工序过程,完成向下游的衬底供货。SiC外延环节则比较单一,主要完成在衬底上进行外延层的制备,采用外延层厚度作为产品的不同系列供货,不同厚度对应不同耐压等级的器件规格,通常为1μm对应100V左右。SiC芯片制备环节负责芯片制造,涉及流程较长,以IDM模式较为普遍。SiC器件封装环节主要进行芯片固定、引线封装,解决散热和可靠性等问题,相对来讲国内发展较为成熟,由此完成SiC器件的制备,下一步进入系统产品和应用环节。SiC工艺及设备特点由于SiC材料具备高硬度、高熔点、高密度等特性,在材料和芯片制备过程中,存在一些制造工艺的特殊性,如单晶采用物理气相传输法(升华法),衬底切磨抛加工过程非常缓慢,外延生长所需温度极高且工艺窗口很小,芯片制程工艺也需要高温高能设备制备等。碳化硅器件生产各工艺环节关键设备由于SiC工艺的特殊性,传统用于Si基功率器件制备的设备已不能满足需求,需要增加一些专用的设备作为支撑,如材料制备中的碳化硅单晶生长炉、金刚线多线切割机设备,芯片制程中的高温高能离子注入、退火激活、栅氧制备等设备。在图形化、刻蚀、化学掩膜沉积、金属镀膜等工艺段,只需在现有设备上调整参数,基本上可以兼容适用。关键装备一览SiC单晶生长设备SiC单晶生长主要有物理气相运输法(PVT)、高温化学气相沉积法和溶液转移法。目前产业上主要以PVT方法为主,PVT方法主要是将高纯的SiC粉末在高温和极低真空下进行加热升华,在顶部籽晶上凝结成固定取向晶格结构的单晶,这种方法目前发展较为成熟,但生产较为缓慢,产能有限。图片来源:天科合达采用PTV法生长碳化硅晶体的设备为长晶炉,该设备在保证满足设计技术要求基础上,还要注意到长晶炉部件在碳化硅晶体生长中经历的苛刻条件,例如:晶体生长室及石墨坩埚等热场核心组件需具备承受2500℃高温的能力;长晶炉加工制作工艺的精密要求,即要求反应室及炉体具有优异的密封性和隔热性,等等。正是这些原因,致使长晶炉的结构和设计变得极其复杂。SiC衬底加工设备切割设备当前有两种工艺方式:一是采用金刚线多线切割机切割后再进行研磨,另外一种采用激光辐照剥离技术后进行表面处理。多线切割工艺方式是目前最常用的方式。多线切割工艺原理图片来源:湖南宇晶国际上SiC晶体切割设备厂家以瑞士的梅耶伯格(Meyer Buger)和日本的高鸟(Takatori)公司为代表,目前线速度水平都能够达到2400m/min,根据工艺需求甚至还能达到更高。国内主要设备厂家包括中国电子科技集团公司第四十五研究所、唐山晶玉和湖南宇晶等,国产设备在切割效率、加工精度、可靠性和工艺成套性等方面与国外设备有一定差距,100~150mmSiC晶体切割设备线速度水平只能达到1500m/min。倒角设备目前倒角设备国际上主要供应商有日本东京精密和Daitron,其中东京精密半导体倒角机在行业内技术先进,已经形成W-GM系列全自动晶圆倒角机,市场占有率达90%以上。国内从事半导体晶圆倒角设备研制的企业有中国电子科技集团公司第二研究所和北京科翰龙半导体公司。中国电子科技集团公司第二研究所目前已成功研发DJJ-120和DJJ-120A两款倒角机型,可以满足50~100mm半导体晶圆的倒角工艺,建立了砷化镓、锑化铟和碲锌镉等半导体晶圆的倒角工艺知识库,自动化程度和倒角精度等均达到东京精密相同的水平。图片来源:中国电子科技集团公司第二研究所磨抛设备碳化硅的磨抛设备分为粗磨和细磨设备,粗磨方面国产设备基本可以满足加工需求,但是细磨方面主要采购来自于日本不二越、英国log-itech、日本disco等公司的设备,采用设备与工艺打包销售的方式,极大的增加了工艺厂商的使用成本和维护成本。国内的碳化硅磨抛设备厂商主要包括中国电子科技集团公司第四十五研究所、深圳东荣和浙江名正。图片来源:中国电子科技集团公司第四十五研究所SiC外延生长设备SiC芯片一般首先在4H-SiC衬底上再生长一层高质量低缺陷的4H-SiC外延层,其厚度决定器件的耐压强度,设备为SiC外延生长炉,该工艺生长温度需要达到最高1700℃,还涉及到多种复杂气氛环境,这对设备结构设计和控制带来很大的挑战。国际上主流的商用SiC材料同质外延生长设备机型分别为德国Aixtron公司的G5WW机型、意大利LPE公司的PE1O6机型和日本Nuflare公司EPIREVOTM S6机型,均能够满足100~150mmSiC晶片的外延生长工艺。SiC芯片制程设备SiC功率芯片的制造工艺流程基本与Si基功率器件类似,需要经过清洗、光刻、沉积、注入、退火、氧化、钝化隔离、金属化等工艺流程。在工艺设备方面,主要涉及清洗机、光刻机、刻蚀设备、LPCVD、蒸镀等常规设备以及高温高能离子注入机、高温退火炉、高温氧化炉等特殊专用设备。SiC高温高能离子注入机在SiC生产线中,高温高能离子注入设备是衡量生产线是否具备SiC芯片制造能力的一个标志;当前应用较为主流的设备主要有M56700-2/UM、IH-860D/PSIC和IMPHEAT等机型。图片来源:中电科电子装备集团有限公司SiC高温退火设备SiC注入完成后,需要采用退火方式进行离子激活和晶格损伤处理。设备需要最高温度达2000℃,恒温区均匀性≤±5℃的半导体炉管设备。SiC高温退火国内应用较为成熟的设备有R2120-3/UM、Activator150、AileSiC-200等。图片来源:北方华创SiC高温氧化设备SiC氧化温度通常在1300~1400℃下进行,伴随氧气、二氯乙烯(DCE)、一氧化氮等复杂气氛环境,常规的石英管式炉已不能满足适用,现主流方式采用专用的加热炉体设计,配套高纯碳化硅材料工艺炉管,实现具有高温高洁净耐腐蚀反应腔的SiC高温氧化炉设计。SiC高温氧化国内应用较为成熟的设备有Ox-idSiC-650、M5014-3/UM和Oxidation150等。图片来源:中电科电子装备集团有限公司此外,在图形化、刻蚀、金属化等工艺设备方面,多个成熟的Si工艺已成功转移到SiC。然而碳化硅材料特性需要开发特定的工艺,其参数必须优化和调整,在设备方面只需做微小的改动或定制功能开发。清洗设备清洗工艺是半导体制程的重要环节,也是影响半导体器件良率的重要因素,目前国际上以东京电子和迪恩士(DNS)为代表的清洗设备厂商可以稳定PRE(去除颗粒效果)做到45~28nm。盛美半导体作为国内单片清洗设备先进企业可以稳定在45nm工艺节点且在国际大厂已成功应用。国内其他清洗设备厂商包括中国电子科技集团公司第四十五研究所、北方华创和至纯科技等。小结据Yole预测,2025年全球碳化硅功率半导体市场规模将达到25.62亿美元,2019-2025年均复合增长率超过30%。随着SiC产业快速发展和自主化需求,装备国产化势在必行、成长空间巨大。国内在衬底、外延、芯片等方面产业布局基本成型,但在关键装备方面与国外仍存在差距,处于跟跑状态;SiC需要解决高成本和高可靠性问题,大尺寸、高效能、低损伤及新工艺方法是未来行业设备发展的趋势。

    SiC芯片

    2023.06.04

  • VPD晶圆表面污染检测技术哪家好?

    VPD晶圆表面污染检测技术哪家好?

    金属污染一直以来是社会环境及良性生态循环的关键要点,如何限制金属污染成为各大检测机构重要的研究项目。英格尔检测已掌握晶圆表面污染检测技术,针对金属的光刻、刻蚀、沉积及清洁等方面所使用的试剂进行检测。英格尔检测专家认为,在制造过程中所使用的机台也是关键控制点,以及在离子注入、反应器、烘箱时所应对的晶圆处理方法。英格尔通过常见污染在工艺及产品中可能造成的影响,英格尔检测举例道:(1)金属污染会造成 p-n 结构中的漏电流,进而导致氧化物的击穿电压降低,以及载流子生命周期的减少。(2)有机污染物可能会导致晶圆表面产生非预期的疏水性质、增加表面的粗糙度、产生雾化 (haze) 表面、和破坏外延层的生长,且在未先移除污染物的情况下,也会影响金属污染的清洗效果。(3)粒子污染则可能导致在蚀刻及微影工艺中,产生阻塞 (blocking) 或遮蔽 (masking) 的效应。英格尔了解到在薄膜成长或沉积过程中,产生针孔 (pinholes) 和微孔(microvoids),若粒子颗粒较大且具有导电性,甚至会导致线路短路。英格尔技术专家表示,晶圆表面的洁净度会影响后续半导体工艺及产品的合格率,甚至在所有产额损失中,高达50%是源自于晶圆表面污染。晶圆表面的洁净度对于后续半导体工艺以及产品合格率会造成一定程度的影响,最常见的主要污染包括金属、有机物及颗粒状粒子的残留,而污染分析的结果可用以反应某一工艺步骤、特定机台或是整体工艺中所遭遇的污染程度与种类。早期曾有文献指出,在制造过程中,因未能有效去除晶圆表面的污染而产生的耗损,在所有产额损失中,可能占达 50% 以上的比例。随着行业工艺的演进,英格尔侦测极限逐渐增高,可以满足此类分析技术的需求。因此英格尔设问:该如何判断此两种检测仪器的使用时机,发挥金属污染分析的最佳表现?英格尔专家表示,英格尔检测VPD 系统通常具备机器手臂来处理样品,避免人为处理样品过程中可能的污染导入,其机台内部洁净度通常为 Class1 环境,虽然可有效降低测定的背景值和侦测极限,但也因此使得机台建置成本偏高。手动的滚珠法虽然较容易有额外污染的导入,但因简单、便宜、快速且弹性较高,较广被实验室采用。不论是常见的工业技术还是高端的半导体工艺,金属污染检测已成为重要的合格率分析检测流程与步骤。英格尔晶圆表面污染检测技术,可检测出因微量污染所导致的组件迁移、短路、侵蚀等缺陷。英格尔在保证精准的条件环境下还可掌握工艺控制进行专家一对一咨询。

    晶圆

    2023.06.04

  • 首页 上一页 1 2 3 4 5 下一页 尾页 共6页,到第